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Abstract 

 

Yen’s Q1 statistic was adapted to test the fit of the two-parameter logistic model (2PLM) 

in item response theory (IRT), whereby a significant result implies that the model fits 

given an acceptable magnitude of misfit.  A Monte Carlo simulation study was performed 

to evaluate the empirical Type I error rate and power of Q1 under the following crossed 

conditions: test length (20-, 40-, and 80-items) and sample size (2500-, 5000-, and 10000-

examinees).  The fit statistic exhibited conservative Type I error rates for larger sample 

sizes and longer test lengths.  The power was adequate in the larger sample size 

conditions. 
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An Equivalency Test for Model Fit 

 

Item response theory (IRT) is a model-based measurement theory that provides 

several attractive features for practitioners, such as invariance of item and person 

parameters.  However, in order for a practitioner to take advantage of IRT’s benefits, 

certain assumptions must be satisfied (e.g., local independence).  A common assumption, 

not often discussed as such, pertains to the fit of the model to the data; i.e., the model 

being used must accurately portray the true relationship between ability and performance 

on the item.  Model misfit has several consequences for the measurement process, 

including possibly leading to a violation of the invariance property (see Bolt, 2002).  As a 

result, it is wise for a test developer to establish that a particular model fits the data before 

operationalizing a valid item.   

There are several model misfit statistics available in practice (e.g., BILOG’s G2 

and Orlando and Thissen’s (2000) S-X2).  For all existing misfit statistics, the null and 

alternative hypotheses are specified, in general terms, as follows: 

  (1) 0

1

:  Model fits the data exactly
:  Model does not fit the data exactly.

H
H

Consequently, the model is initially assumed to fit exactly; if the evidence of misfit is 

substantial, the null hypothesis of fit is rejected, and it is concluded that the model does 

not fit.  There are two main disadvantages to specifying the hypotheses in this manner.  

First, since the point-null hypothesis, specified in (1), is always false (Cohen, 1994), H0 

will inevitably be rejected as the sample size becomes large, even in the presence of a 

trivial amount of misfit.  As a result, a test developer is left interpreting the practical 

meaningfulness of a significant result.  This problem further highlights test developers’ 
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unrealistic expectations that a parametric model will be able to explain the underlying 

item response function perfectly.  One possible solution to this problem is to restate the 

hypotheses as follows: 

  (2) 0

1

:  Model provides close fit to the data
:  Model does not provide close fit to the data.

H
H

Notice that the hypotheses specified in (2) no longer require exact fit.  As a result, H0 is 

not always false, and the aforementioned overpower problem for large sample sizes will 

not exist.   

A second disadvantage of (1), which is also an issue with (2), is that it is not 

possible to conclude that the model fits the data, because failing to reject H0 is not the 

same as accepting H0 to be true (Tryon, 2001; Rogers, Howard, & Vessey, 1993).  

However, within the context of model fit, concluding that the model fits the data is 

precisely the conclusion that one wishes to be able to draw.  The purpose of the present 

study is to describe a new model-fit testing procedure that avoids these two 

disadvantages.  In this study, we present a test for model fit in which H0 is not always 

false and which permits the conclusion that the model fits the data. 

 There are two main types of errors that one can make when performing a 

hypothesis test: Type I and II.  A Type I error is committed when a true H0 is rejected, 

whereas a Type II error occurs when a false H0 is not rejected.  Because it is easier to 

control the probability of committing a Type I error, the null and alternative hypotheses 

should be specified so that the worse mistake that can be made is associated with a Type I 

error.  In the context of model fit, the worse mistake in most situations is to conclude that 

the model fits the data when in fact it does not fit the data.  Therefore, the correct 

formulation of the hypotheses is as follows: 
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  (3) 0

1

:  Model does not provide close fit to the data
:  Model provides close fit to the data .

H
H

The form of hypotheses specified in (3) is a type of range-null hypothesis (Serlin & 

Lapsley, 1993) often referred to as an equivalency hypothesis.  The name equivalency 

comes from biostatistics, where sometimes the goal is to conclude that two experimental 

drugs performed comparably (Rogers et. al., 1993).  The present study will describe a 

method for testing model fit for the two-parameter logistic model (2PLM) based on a 

form of Yen’s Q1 statistic.   

Fit Statistic in IRT 

 Yen (1981) proposed a fit statistic based on comparing the observed proportion 

correct to the model-based prediction for groups of examinees that were grouped based 

on ability estimates.  The statistic, Q1, is distributed as a chi-square variate, with degrees 

of freedom equal to the number of groups minus the number of parameters in the model 

and is computed as follows: 

 
2

1
1

( )
(1 )

G
g g

g
g g g

p P
Q n

P P=

−
=

−∑ , (4) 

where G represents the number of groups; pg and Pg indicate the observed proportion 

correct and the model-based prediction for group g, respectively; and ng denotes the 

number of examinees in group g.   

 Unfortunately, Q1 exhibits inflated Type I error rates because, in practice, 

examinees can only be grouped based on theta estimates rather than true theta values.  

Orlando and Thissen (2000) developed a procedure for grouping examinees based on the 

number correct (NC) score instead of the model-based theta estimate.  Using this new 

procedure for forming groups, Orlando and Thissen (2000) found that their S-X2 index, 
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which is structurally identical to Yen’s (1981) Q1 statistic, controlled the Type I error 

rate.  In the present study, a strategy similar to that developed by Orlando and Thissen 

(2000) for using raw scores to group examinees was used to test the equivalency 

hypothesis stated in (3).  The following discussion details how Yen’s Q1 test statistic was 

calculated for item i. 

1. Obtain an estimate of θ  for each examinee j by converting the rest score (i.e., 

raw score excluding item i) to percentiles (rankj/(N+1)) and then to 

corresponding z-scores. 

2. Compute observed proportion correct ( )gp  for item i for each unique estimate 

of  (i.e., group g).  Note that the number of p’s for item i equals the number 

of unique  estimates (i.e., raw scores). 

θ

θ

3. Calculate the model-based probabilities for each group, Pg, which are defined 

by the unique θ  estimates, by finding the optimal α  and β  for the 2PLM 

using a straight forward MLE technique (Bolt, 2002) given the vector of gp  

and unique θ  estimates. 

4. Compute Q1 in the form described by Yen (1981). 

The advantage of this procedure is that it not only takes advantage of Orlando and 

Thissen’s use of grouping examinees based on raw scores, it also lends itself to testing 

the equivalency hypothesis specified in (3). 

Equivalency Testing Procedure 

 In order to test for equivalency, a test developer must specify a null and 

alternative hypothesis that states an acceptable amount of misfit that can be tolerated.  

One such criterion may be specified with respect to how far the true probability of a 
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correct response is from the model-based estimate for each group.  For example, suppose 

that a test developer is willing to use a model-based estimate for an item as long as its 

predictions are, on average, within δ  of the true probability.  Therefore, H0 and H1 can be 

written as follows: 

 
2 2

0

2 2
1

: ( )

: ( ) ,
g g

g g

H E P

H E P

− π ≥ δ

− π < δ
 (5) 

where Pg and gπ  represent the model-based and true probability of group g correctly 

answering an item, respectively.   

 Once the criterion and null hypothesis have been specified, the next step is to 

obtain the critical values for testing H0.  In testing the equivalency hypothesis, it is 

necessary to construct two distributions under H0: one for an upper and one for a lower 

bound.  As a visual demonstration, consider the item characteristic curve (ICC) for a 

particular item shown in Figure 1. 

_____________________ 

Insert Figure 1 about here 

_____________________ 

The solid line represents the model-based probability (Pg) while the dashed lines 

represent the upper ( )U
gπ  and lower ( )L

gπ  bounds defined by the criterion of ; 

i.e., for each value of , an error of 

.025δ =

θ .025±  is deemed acceptable.   

Each distribution under H0 is based on a noncentral chi-square with degrees of 

freedom equal to the number of groups minus the number of item parameters, and a 

noncentrality parameter ( , which is calculated for the upper and lower bounds as 

follows: 

)λ
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 The critical value for both null distributions is the chi-square value associated 

with the 5th percentile of the noncentral chi-square, which is in contrast to the 95th 

percentile representing the critical value of a test of model misfit specified in (1).  

Therefore, if the observed statistic is less than the 5th percentile in both noncentral 

distributions, we can reject H0 and conclude that the model provides good-enough fit.  

Each test can be done using a full α  because, for any particular item, Pg cannot 

simultaneously be above and below gπ  by at least δ  (i.e., only one of the null 

distributions can be true). 

Method 

 A Monte Carlo simulation study was performed to assess the empirical Type I 

error rate and power of the proposed model fit statistic.  Dichotomous data were 

generated under the following crossed conditions: test length (20-, 40-, and 80-items) and 

sample size (2500-, 5000-, and 10000-examinees).  The large sample sizes have been 

chosen to represent the difficulty that large-scale standardized testing programs face 

when assessing fit in the presence of “too much” power.   

 To assess the Type I error rate (which, under the frameworks in (3) and (5), is the 

percentage of misfitting items identified as fitting within some pre-specified criterion), 

20% of the items were simulated from the three-parameter logistic model (3PLM) such 

that the magnitude of misfit was slightly beyond the criterion defined under H0 (i.e., 

unacceptable amount of misfit).  The magnitude of misfit was measured as follows: 
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 ( )
2

3 , 2 ,
1

( )
N

j PLM j PLM j
j

MISFIT w P P
=

= θ −∑ . (7) 

P3PLM,j represents the generating probability given by the 3PLM, while P2PLM,j represents 

the probability of the best-fitting 2PLM as obtained via an MLE technique (Bolt, 2002).  

 represents the weight, defined by the normalized density of the standard normal, 

for a particular  value.  For purposes of assessing the Type I error rate, generating item 

parameters that produced MISFIT values of .025 (i.e., 

( )jw θ

jθ

.025δ = ) were used to simulate 

misfit. 

 To assess the power of the model fit statistic to detect items for which the 2PLM 

fit adequately, 40% of the items were simulated from the 2PLM while the remaining 40% 

were simulated from the 3PLM that corresponded to MISFIT values of around .01.  The 

generating parameter values are reported in Table 1.  The first 20% of the items of a 

particular test length (e.g., items 1-16 for test length of 80 items) correspond to the 

parameter values used to simulate misfit while the following 40% correspond to the 

“fitting” 3PLM parameter values.  The remaining set of parameter values belong to the 

2PLM and were selected from an English placement examination used in a Midwestern 

university system.  In addition, the generating parameter values were hierarachically 

nested within test length, so that the 40-item test consisted of half of the items on the 80-

item test and the 20-item test consisted of half of the items on the 40-item test. 

_____________________ 

Insert Table 1 about here 

_____________________ 
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 The underlying theta values were sampled from the standard normal distribution, 

θ~N(0,1).  1000 replications were performed for each of the 9 conditions (test length X 

sample size). 

 Code within the software package R was used to compute the fit statistic, Q1, and 

to examine the empirical Type I error rate and power for each item at an  level of .05. α

Results 

Empirical Type I Error Rate 

 Table 2 reports the detection rate for each condition averaged across items that 

were simulated to exhibit misfit slightly beyond the acceptable criterion of =.025. δ

_____________________ 

Insert Table 2 about here 

_____________________ 

Although the overall empirical Type I error rate was acceptable, there were apparent 

sample size and test length effects.  As the sample size increased, the empirical Type I 

error rate decreased noticeably, especially for the 40- and 80-item test length conditions.  

As test length increased from 20 to 40 items, the Type I error rate dropped. 

Empirical Power 

 Table 3 reports the detection rate for each condition averaged across items that 

were simulated from the 2PLM and 3PLM with acceptable misfit (i.e., items 17-80 in 

Table 1).   

_____________________ 

Insert Table 3 about here 

_____________________ 
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There were apparent sample size and test length effects in that the probability of detecting 

fitting items increased with larger sample sizes but decreased with longer test lengths.  

Furthermore, the detection rate was larger for items generated from the 2PLM versus 

those generated from the 3PLM. 

Discussion 

 The fit procedure described in this paper was developed to test a null hypothesis 

whose rejection would imply that the model fits, given an acceptable discrepancy 

between the average true probability of a correct response and model-based prediction.  

The advantage of such a method is that it tests a meaningful hypothesis and is particularly 

useful in evaluating fit for large samples in which the traditional point-null hypothesis is 

usually rejected, even for a trivial amount of misfit.  Although the procedure was 

conservative for larger sample sizes and test lengths, it did not exhibit an inflated Type I 

error rate and was able to detect fitting items at an adequate level in the larger sample 

size conditions.   

 One possible explanation for why the statistic exhibited a conservative Type I 

error rate for larger sample sizes may be due in part to how the misfit was simulated.  To 

assess the Type I error rate at a specific α  level, it is important to simulate misfit exactly 

at the criterion specified under H0.  Unfortunately, it is difficult, if not impossible, to 

select various, realistic generating item parameter values for the 3PLM that simulate the 

misfit at exactly the specified δ  value.  As a result, generating item parameter values 

were chosen that produced MISFIT values ranging from very close to slightly beyond 

.025.  Therefore, as the sample size increased, it was easier to identify the item as 

misfitting, resulting in a lower probability of rejecting the null hypothesis that the item 
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did not fit.  Hence, the further the MISFIT values are from the criterion, the lower the 

Type I error rate will be, particularly for large sample sizes where item parameters are 

estimated with less error.   

 A critical element of the range-null hypothesis approach is specifying the 

particular value for δ .  For example, the overall power of the method is affected partly 

by the specified δ  value, with larger values leading to increased power, presuming a non-

inflated Type I error rate.  Although the particular value of δ  selected for this study may 

be considered reasonable (albeit perhaps a little small), it is by no means the only sensible 

value, and in fact, was chosen more for illustrative purposes than as a suggestion for 

practitioners.  It should be clear that specifying the criterion under H0 is not trivial and 

requires further research before acceptable values may be given as guidelines.  When 

performing such research, it is most important to consider how misfit influences the 

validity of an IRT scale through loss of the invariance property (Bolt, 2002).  Therefore, 

misfit may have a similar effect on the measurement process as differential item 

functioning (DIF); e.g., it may corrupt the scale through its effect on the equating process 

under certain conditions (Shepard, Camilli, & Williams, 1984).   

 Although only the 3PLM was used to simulate item responses for which the 

2PLM either “fit” or misfit, depending on the average discrepancy between the true IRF 

and optimal 2PLM IRF, it is certainly not the only model that could have been used to 

simulate non-2PLM IRFs.  In fact, various forms of misfit are conceivable when applying 

parametric IRT models.  Another type of non-2PLM IRF that may occur is where the true 

IRF departs from the typical logistic, S-shaped curve.  Such an IRF may be generated 

using the mixture nominal response model (MNRM; Bolt, Cohen, & Wollack, 2001).  
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Interestingly, whereas the 3PLM tends to produce misfit at the extremes of the ability 

distribution where the lower asymptote is above zero, the 2PLM misfits the IRF produced 

by the MNRM in the middle of the ability distribution.  Therefore, using different models 

to simulate misfit allows one to explore the impact that different types of misfit have on 

the fit statistic. 

 An advantage of the method described herein is that it can be easily extended to 

test the fit of other parametric models such as the 3PLM, or even models for polytomous 

data such as Samejima’s Graded Response Model.  Furthermore, it will be worthwhile to 

consider applying the range-null approach to other available statistics, such as Orlando 

and Thissen’s S-X2 and Glas and Falcon’s LM test (2003).   
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Table 1.  Generating item parameter values. 

 80-item 40-item 20-item 
Item α  β  γ  α  β  γ  α  β  γ  

1 1.53 -0.31 0.33 1.53 -0.31 0.33 1.53 -0.31 0.33 
2 1.19 0.35 0.31 1.19 0.35 0.31 1.19 0.35 0.31 
3 1.06 1.43 0.25 1.06 1.43 0.25 1.06 1.43 0.25 
4 1.20 0.57 0.23 1.20 0.57 0.23 1.20 0.57 0.23 
5 1.28 0.03 0.41 1.28 0.03 0.41    
6 1.29 0.22 0.26 1.29 0.22 0.26    
7 1.11 0.76 0.28 1.11 0.76 0.28    
8 1.08 1.14 0.26 1.08 1.14 0.26    
9 1.11 1.16 0.22       
10 1.08 0.98 0.42       
11 1.07 1.57 0.31       
12 1.10 1.27 0.21       
13 1.08 1.15 0.43       
14 1.07 1.38 0.37       
15 1.33 -0.07 0.42       
16 1.34 -0.08 0.38       
17 0.82 0.46 0.16 0.82 0.46 0.16 0.82 0.46 0.16 
18 0.74 0.19 0.29 0.74 0.19 0.29 0.74 0.19 0.29 
19 0.75 0.59 0.19 0.75 0.59 0.19 0.75 0.59 0.19 
20 0.94 0.55 0.10 0.94 0.55 0.10 0.94 0.55 0.10 
21 0.76 0.48 0.20 0.76 0.48 0.20 0.76 0.48 0.20 
22 0.87 0.51 0.13 0.87 0.51 0.13 0.87 0.51 0.13 
23 0.97 -0.62 0.29 0.97 -0.62 0.29 0.97 -0.62 0.29 
24 1.05 -0.47 0.19 1.05 -0.47 0.19 1.05 -0.47 0.19 
25 0.99 0.01 0.14 0.99 0.01 0.14    
26 0.85 0.08 0.19 0.85 0.08 0.19    
27 1.38 -0.86 0.19 1.38 -0.86 0.19    
28 0.82 1.17 0.10 0.82 1.17 0.10    
29 0.82 -0.14 0.27 0.82 -0.14 0.27    
30 1.22 0.24 0.07 1.22 0.24 0.07    
31 0.78 0.58 0.17 0.78 0.58 0.17    
32 1.10 -0.74 0.25 1.10 -0.74 0.25    
33 1.05 1.25 0.52       
34 0.87 0.26 0.15       
35 1.04 0.12 0.11       
36 1.19 0.06 0.87       
37 0.85 0.58 0.13       
38 1.31 -0.70 0.16       
39 0.85 0.34 0.15       
40 0.94 1.54 0.06       
41 0.86 1.62 0.08       
42 0.84 0.51 0.14       
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43 1.18 -0.01 0.10       
44 0.81 0.56 0.15       
45 0.89 0.01 0.17       
46 1.08 -0.42 0.17       
47 1.14 0.66 0.06       
48 0.83 0.17 0.19       
49 1.25 -1.13  1.25 -1.13  1.25 -1.13  
50 0.79 -0.21  0.79 -0.21  0.79 -0.21  
51 0.99 -0.37  0.99 -0.37  0.99 -0.37  
52 1.23 0.65  1.23 0.65  1.23 0.65  
53 0.98 0.02  0.98 0.02  0.98 0.02  
54 0.99 -0.17  0.99 -0.17  0.99 -0.17  
55 1.66 -0.18  1.66 -0.18  1.66 -0.18  
56 1.22 1.28  1.22 1.28  1.22 1.28  
57 1.03 -0.95  1.03 -0.95     
58 0.74 0.54  0.74 0.54     
59 1.47 -1.01  1.47 -1.01     
60 0.88 -0.60  0.88 -0.60     
61 1.01 -0.48  1.01 -0.48     
62 0.85 0.55  0.85 0.55     
63 0.73 0.03  0.73 0.03     
64 1.10 -1.26  1.10 -1.26     
65 1.66 -0.18        
66 0.95 -0.38        
67 1.25 -0.53        
68 0.87 0.70        
69 0.83 -0.29        
70 1.23 0.65        
71 0.73 0.03        
72 1.20 -1.68        
73 1.15 -1.21        
74 1.07 -0.74        
75 1.26 -1.06        
76 0.71 -0.51        
77 0.48 1.18        
78 1.23 -0.34        
79 1.17 0.16        
80 1.15 -1.18        
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Table 2.  The empirical Type I error rate for each condition averaged across items that 
were simulated to misfit slightly beyond the acceptable criterion of δ=.025. 
 

  Test Length 
  20-item 40-item 80-item 

2500-examinee .061 .054 .051 
5000-examinee .055 .042 .044 

 
Sample Size 

10000-examinee .049 .026 .021 
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Table 3. The detection rate for each condition averaged across items that were simulated 
from the 2PLM and “fitting” 3PLM. 
 

  Test Length 
  20-item 40-item 80-item 

Generating Model 2PLM 3PLM 2PLM 3PLM 2PLM 3PLM
2500-examinee .261 .155 .204 .149 .139 .116 
5000-examinee .573 .317 .514 .300 .372 .252 

 
 

Sample Size 
10000-examinee .894 .590 .886 .574 .809 .506 
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Figure 1.  An ICC with  and 1.37α = 0.21β = − , along with the upper and lower bounds 
of acceptable misfit based on δ =.025. 
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